Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition

Now, the statement (i) follows from (S.1.3) by setting y = x. (ii) Since the vectors ci1 , . . . , ciK−1 are linearly independent in R , it follows that there exists a vector y such that det [ ci1 . . . ciK−1 y ] 6= 0. Hence, by (S.1.3), the (i1, . . . , iK−1)-th column of B(C) is nonzero. (iii) follows from (S.1.3) and the fact that det [ ci1 . . . ciK−1 y ] = 0 if and only if y ∈ span{ci1 , ....

متن کامل

Computing the polyadic decomposition of nonnegative third order tensors

Computing the minimal polyadic decomposition (also often referred to as canonical decomposition, or sometimes Parafac) amounts to finding the global minimum of a coercive polynomial in many variables. In the case of arrays with nonnegative entries, the low-rank approximation problem is well posed. In addition, due to the large dimension of the problem, the decomposition can be rather efficientl...

متن کامل

Canonical polyadic decomposition of third-order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations

Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing matrix, which contains the information about the inten...

متن کامل

Canonical Polyadic Decomposition with Orthogonality Constraints

Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an important tool in mathematical engineering. In many applications at least one of the matrix factors is constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees uniqueness of the CPD under this constraint and generalize the result to the case where one of the factor matrices has full colum...

متن کامل

Canonical polyadic decomposition of 3rd order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2014

ISSN: 0895-4798,1095-7162

DOI: 10.1137/130916084